Answer:
The condensed log equation is: [tex]\log{\frac{x^4y}{z^5}}[/tex]
Step-by-step explanation:
We use these following logarithm properties to solve this question:
[tex]a\log{x} = \log{x^a}[/tex]
[tex]\log{a} + \log{b} = \log{ab}[/tex]
[tex]\log{a} - \log{b} = \log{\frac{a}{b}}[/tex]
In this question:
[tex]4\log{x} = \log{x^4}[/tex]
[tex]5\log{5} = \log{z^5}[/tex]
So
[tex]4\log{x} + \log{y} - 5\log{z}[/tex]
Becomes:
[tex]\log{x^4} + \log{y} - \log{z^5}[/tex]
Now applying the addition and subtraction properties, we have:
[tex]\log{\frac{x^4y}{z^5}}[/tex]
The condensed log equation is: [tex]\log{\frac{x^4y}{z^5}}[/tex]