Answer:
[tex]\frac{6}{5}[/tex]
Step-by-step explanation:
let the denominator of the original fraction be x, then
[tex]\frac{x-2}{x}[/tex] ← original fraction
Then
[tex]\frac{2(x-2)}{x+5}[/tex] ← new fraction
The product of original and reciprocal of new is
[tex]\frac{x-2}{x}[/tex] × [tex]\frac{x+5}{2(x-2)}[/tex] ← cancel (x - 2)
= [tex]\frac{x+5}{2x}[/tex] = [tex]\frac{1}{4}[/tex] ( cross- multiply )
4(x + 5) = 2x
4x + 20 = 2x ( subtract 2x from both sides )
2x + 20 = 0 ( subtract 20 from both sides )
2x = - 20 ( divide both sides by 2 )
x = - 10
Then original fraction
[tex]\frac{x-2}{x}[/tex] = [tex]\frac{-12}{-10}[/tex] = [tex]\frac{6}{5}[/tex]