contestada

I have $8$ pieces of strawberry candy (all identical) and $7$ pieces of rhubarb candy (all identical). Find the number of ways I can distribute this candy to $5$ children.

This is a math question,
Please Solve Correctly.

Respuesta :

Given:

Number of strawberry candy = [tex]\bold{8\ pieces}[/tex]

Number of rhubarb candy = [tex]\bold{7 \ pieces}[/tex]

Find the number of ways for equally distributing candy to all 5 children

Using formula:

[tex]\to \bold{_{n} C_{r}=\frac{n !}{r!(n-r) !}}[/tex]

Calculating the distributing way for strawberry candy:

[tex]\to \bold{_{8} C_{5}=\frac{8 !}{5!(8-5) !}}[/tex]

           [tex]\bold{=\frac{8 !}{5! \ 3 !}}\\\\\bold{=\frac{8 \times 7 \times 6 \times 5!}{5! \ 3 \times 2\times 1}}\\\\\bold{=\frac{8 \times 7 \times 6 }{ 6}}\\\\\bold{=8 \times 7}\\\\\bold{=56}[/tex]

Calculating the distributing way for rhubarb candy:

[tex]\to \bold{_{7} C_{5}=\frac{7 !}{5!(7-5) !}}[/tex]

           [tex]\bold{=\frac{7 !}{5! \ 2 !}}\\\\\bold{=\frac{7 \times 6 \times 5!}{5! \ 2\times 1}}\\\\\bold{=\frac{ 7 \times 6 }{ 2}}\\\\\bold{=7 \times 3}\\\\\bold{=21}[/tex]

Adding both distributing ways:

[tex]\to \bold{56+21=77}[/tex] ways

Learn more:

probability: brainly.com/question/23044118

Ver imagen codiepienagoya