Answer:
The answer is "[tex]f_{R} (r) =\frac{5}{2r^2}; \frac{10}{12} \leq r \leq \frac{10}{8}[/tex]"
Step-by-step explanation:
They have the distributional likelihood function of T: [tex]f_{\Gamma } \ (t)= \frac{1}{12-8}= \frac{1}{4}; 8 \leq t \leq 12[/tex]
This is the following PDF of transformation [tex]R =\frac{10}{T}[/tex]
They know that PDF is the Y=g(X) transformation
[tex]f_{y} (y)=f_{x} (g^{-1} (y))|\frac{dg^{-1} (y)}{dy}[/tex]
Using theformula, the PDF of [tex]R =\frac{10}{T}[/tex] is
[tex]f_{R} (\Gamma)=f_{(\Gamma)} |\frac{d(\frac{10}{r})}{dr}| \\\\f_{R}(r) =\frac{1}{4}| -\frac{20}{r^2}|\\\\f_{R} (r) =\frac{5}{2r^2}; \frac{10}{12} \leq r \leq \frac{10}{8}\\\\[/tex]