Given the functions f(x), g(x), and h(x) shown below; list the functions from greatest to least by average rate of
change over the intervall

Given the functions fx gx and hx shown below list the functions from greatest to least by average rate of change over the intervall class=

Respuesta :

Answer:

f(x) > h(x) > g(x)

Step-by-step explanation:

For the average rate of change of a function between x = a and x = b,

Average rate of change = [tex]\frac{f(b)-f(a)}{b-a}[/tex]

From the table given,

Average rate of change of function 'f' between x = 1 and x = 3,

Average rate of change = [tex]\frac{f(3)-f(1)}{3-1}[/tex]

                                        = [tex]\frac{15-7}{3-1}[/tex]

                                        = 4

For the function 'g',

g(x) = 2x² - 18x

Average rate of change = [tex]\frac{g(3)-g(1)}{3-1}[/tex]

g(3) = 2(3)²- 18(3)

      = 18 - 54

      = -36

g(1) = 2(1)² - 18(1)

      = 2 - 18

      = -16

Therefore average rate of change = [tex]\frac{-36+16}{3-1}[/tex]

                                                         = -10

From the graph attached,

Average rate of change of the graph between x = 1 and x = 3,

Average rate of change = [tex]\frac{h(3)-h(1)}{3-1}[/tex]

h(3) = 7.5 [Although the graph is not clear]

h(1) = 2

Average rate of change = [tex]\frac{7.5-2}{3-1}[/tex]

                                      �� = 2.75

Therefore, order of rate of change (from greatest to the least) for the given functions will be,

f(x) > h(x) > g(x)