How to prove this using trig identities?
(Tan B + Cot B)^2 = sec^2B + csc^2B

Thanks and please shows steps. I will vote best answer and helpful and do more.

Respuesta :

Step-by-step explanation:

tanB + cotB = (sinB)/(cosB) + (cosB)/(sinB)

 

                      = (sin2B + cos2B)/[(cosB)(sinB)]

 

                       = 1/[(cosB)(sinB)]

 

                        = (1/cosB)(1/sinB)

 

                        = (secB)(cscB)