Respuesta :

Question

The data in this question will be utilized for the next three questions. The number of pets a group of students has, are given below.

Number of pets:        0-2    2-4   4-6   6-8   8-10   10-12    12-14

Number of students:  1        2      1        5       6         2           3

Calculate

(1) Mean      (2) Sample Variance    (3) Sample Standard Deviation

Answer:

[tex](1)[/tex] [tex]\bar x = 8.1[/tex]

[tex](2)[/tex] [tex]\sigma^2 = 6.341[/tex]

[tex](3)[/tex] [tex]\sigma = 2.518[/tex]

Step-by-step explanation:

Given

The above data

First, we calculate the class midpoint (x)

Pets:  [tex]0-2[/tex]    [tex]2-4[/tex]   [tex]4-6[/tex]   [tex]6-8[/tex]   [tex]8-10[/tex]   [tex]10-12[/tex]    [tex]12-14[/tex]

x           1           3          5       7           9          11          13

f:           1            2         1        5           6         2           3

The class midpoint (x) is calculated by the average of each group.

For pets: 0 - 2.

[tex]x = \frac{0 + 2}{2}= \frac{2}{2} = 1[/tex]

The same is done for other groups.

Solving (a): Mean

[tex]\bar x = \frac{\sum fx}{\sum f}[/tex]

This gives:

[tex]\bar x = \frac{1 * 1 + 3 * 2 + 5 * 1 + 7 * 5 + 9 * 6 + 11 * 2 + 13 * 3}{1 + 2 + 1 + 5 + 6 + 2 + 3}[/tex]

[tex]\bar x = \frac{162}{20}[/tex]

[tex]\bar x = 8.1[/tex]

Solving (b): Sample Variance

This is calculated as:

[tex]\sigma^2 = \frac{\sum(x_i - \bar x)^2}{\sum f - 1}[/tex]

So:

[tex]\sigma^2 = \frac{(1 - 8.1)^2+(3 - 8.1)^2+(5 - 8.1)^2+(7 - 8.1)^2+(9 - 8.1)^2+(11 - 8.1)^2+(13 - 8.1)^2}{20 - 1}[/tex]

[tex]\sigma^2 = \frac{120.47}{19}[/tex]

[tex]\sigma^2 = 6.341[/tex]

Solving (c): The sample standard deviation

This is calculated as:

[tex]\sigma = \sqrt{\sigma^2[/tex]

[tex]\sigma = \sqrt{6.341[/tex]

[tex]\sigma = 2.518[/tex]