Respuesta :

Answer:

(3, -8) and (2, -10)

Step-by-step explanation:

Given

[tex]10x + 4y < 12[/tex]

[tex]8x - 3y > 20[/tex]

Required

Select the true coordinate points in (3, -8) (2, 5) (-5, 1) (10, 3) (2, -10)

(3, -8)

x = 3 and y = -8

[tex]10x + 4y < 12[/tex]

[tex]10 * 3 + 4 * -8 < 12[/tex]

[tex]30 - 32 < 12[/tex]

[tex]-2 < 12[/tex] --- True

[tex]8x - 3y > 20[/tex]

[tex]8 * 3 - 3 * -8> 20[/tex]

[tex]24 +24> 20[/tex]

[tex]48> 20[/tex] --- True

(2, 5)

x = 2 and y = 5

[tex]10x + 4y < 12[/tex]

[tex]10 * 2 + 4 * 5 < 12[/tex]

[tex]20 + 20 < 12[/tex]

[tex]40 < 12[/tex] --- False (No need to check the other inequality)

(-5, 1)

x = -5 and y = 1

[tex]10x + 4y < 12[/tex]

[tex]10 * -5 + 4 * 1 < 12[/tex]

[tex]-46 < 12[/tex] --- True

[tex]8x - 3y > 20[/tex]

[tex]8 * -5 - 3 * 1 > 20[/tex]

[tex]-43 > 20[/tex] --- False

(10, 3)

x = 10 and y = 3

[tex]10x + 4y < 12[/tex]

[tex]10 * 10 + 4 * 3 < 12[/tex]

[tex]112 < 12[/tex] --- False (No need to check the other inequality)

(2, -10)

x = 2 and y = -10

[tex]10x + 4y < 12[/tex]

[tex]10 * 2 + 4 * -10 < 12[/tex]

[tex]-20 < 12[/tex] --- True

[tex]8x - 3y > 20[/tex]

[tex]8 * 2 - 3 * -10 > 20[/tex]

[tex]46 > 20[/tex] --- True

Hence, the solution to the inequalities are:

(3, -8) and (2, -10)