Respuesta :

Answer:

[tex]y' = \frac{sec(x)}{3}[sin(3x) tan(x) + 3cos(3x)][/tex]

Explanation:

Given

[tex]\frac{sin3x\ secx}{3}[/tex]

Required

The quotient rule

Quotient rule states that:

[tex]y' = \frac{V\frac{du}{dx} - U\frac{dv}{dx}}{v^2}[/tex]

Where

[tex]v = 3[/tex] and [tex]\frac{dv}{dx} = 0[/tex]

[tex]u = sin3x\ secx[/tex]

[tex]\frac{du}{dx}[/tex] using product rule is:

[tex]\frac{du}{dx} = sin3x * \frac{d[secx]}{dx} + secx * \frac{d[sin3x]}{dx}[/tex]

Differentiate all:

[tex]\frac{du}{dx} = sin(3x) sec(x) tan(x) + 3sec(x)cos(3x)[/tex]

Factorize:

[tex]\frac{du}{dx} = sec(x)[sin(3x) tan(x) + 3cos(3x)][/tex]

So, the rule:

[tex]y' = \frac{V\frac{du}{dx} - U\frac{dv}{dx}}{v^2}[/tex] becomes

[tex]y' = \frac{3[sec(x)[sin(3x) tan(x) + 3cos(3x)]] - [sin3x\ secx] * 0}{3^2}[/tex]

Solving further:

[tex]y' = \frac{3[sec(x)[sin(3x) tan(x) + 3cos(3x)]]}{9}[/tex]

[tex]y' = \frac{sec(x)[sin(3x) tan(x) + 3cos(3x)]}{3}[/tex]

[tex]y' = \frac{sec(x)}{3}[sin(3x) tan(x) + 3cos(3x)][/tex]