Answer:
[tex]f(x) = \frac{3}{4}x +3[/tex]
Step-by-step explanation:
Given
[tex]f(x) = \frac{3}{4}x +3[/tex]
[tex]f(x) = \frac{4}{3}x-4[/tex]
Required
For which function is [tex]f(0) = 3[/tex] and [tex]f(-4) = 0[/tex] true
[tex]f(x) = \frac{3}{4}x +3[/tex]
Substitute 0 for x
[tex]f(0) = \frac{3}{4} * 0 + 3[/tex]
[tex]f(0) = 0 + 3[/tex]
[tex]f(0) = 3[/tex]
Substitute -4 for x
[tex]f(-4) = \frac{3}{4} * -4 + 3[/tex]
[tex]f(-4) = -3 + 3[/tex]
[tex]f(-4) = 0[/tex]
Hence:
[tex]f(x) = \frac{3}{4}x +3[/tex] is true for [tex]f(0) = 3[/tex] and [tex]f(-4) = 0[/tex]