Respuesta :

Given:

The sequence can be generated by

[tex]a_n=4a_{(n - 1)}[/tex]

Where [tex]a_1= 6[/tex] and [tex]n[/tex] is a whole number greater than 1.

To find:

The first four terms of the given sequence.

Solution:

We have,

[tex]a_n=4a_{(n - 1)}[/tex]          ...(i)

It is given that [tex]a_1= 6[/tex]. So, for [tex]n=2[/tex], we get

[tex]a_2=4a_{(2 - 1)}[/tex]

[tex]a_2=4a_1[/tex]

[tex]a_2=4(6)[/tex]

[tex]a_2=24[/tex]

Putting [tex]n=3[/tex] in (i), we get

[tex]a_3=4a_{(3- 1)}[/tex]

[tex]a_3=4a_2[/tex]

[tex]a_3=4(24)[/tex]

[tex]a_3=96[/tex]

Putting [tex]n=4[/tex] in (i), we get

[tex]a_4=4a_{(4- 1)}[/tex]

[tex]a_4=4a_3[/tex]

[tex]a_4=4(96)[/tex]

[tex]a_4=384[/tex]

The first four terms of the given sequence are 6, 24, 96,384.

Therefore, the correct option is C.