Respuesta :

Answer:

[tex]\dfrac{1}{27}[/tex]

Step-by-step explanation:

Given that,

a-b = 3

We need to find the value of [tex]\dfrac{27^{\dfrac{1}{3}b}}{9^{\dfrac{1}{2}a}}[/tex].

We know that,

[tex]27=3^3\\\\9=3^2[/tex]

So,

[tex]\dfrac{27^{\dfrac{1}{3}b}}{9^{\dfrac{1}{2}a}}=\dfrac{3^3^({\dfrac{1}{3}b})}{3^2^{\dfrac{1}{2}a}}\\\\=\dfrac{3^b}{3^a}[/tex]

We know that : [tex]\dfrac{x^p}{x^q}=x^{p-q}[/tex]

So,

[tex]\dfrac{3^b}{3^a}=3^{b-a}[/tex]

Since, b-a = -3. So,

[tex]3^{b-a}=3^{-3}\\\\=\dfrac{1}{3^3}\\\\=\dfrac{1}{27}[/tex]

So, the value of the given expression is equal to [tex]\dfrac{1}{27}[/tex].