Respuesta :
Answer:
[tex]\displaystyle d = 5.7[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (2, 3)
Point (-2, 7)
Step 2: Identify
(2, 3) → x₁ = 2, y₁ = 3
(-2, 7) → x₂ = -2, y₂ = 7
Step 3: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(-2-2)^2+(7-3)^2}[/tex]
- [Distance] [√Radical] (Parenthesis) Subtract: [tex]\displaystyle d = \sqrt{(-4)^2+(4)^2}[/tex]
- [Distance] [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{16+16}[/tex]
- [Distance] [√Radical] Add: [tex]\displaystyle d = \sqrt{32}[/tex]
- [Distance] [√Radical] Simplify: [tex]\displaystyle d = 4\sqrt{2}[/tex]
- [Distance] Evaluate: [tex]\displaystyle d = 5.65685[/tex]
- [Distance] Round: [tex]\displaystyle d = 5.7[/tex]