Answer:
[tex]Q_1 = 498[/tex]
[tex]Q_3 =1052[/tex]
Step-by-step explanation:
Given
[tex]Data: 777,\ 498,\ 619,\ 379,\ 895,\ 1,256,\ 1052[/tex]
[tex]n = 7[/tex]
First, the data has to be arranged:
[tex]Data: 379,\ 498,\ 619,\ 777,\ 895,\ 1052,\ 1256[/tex]
Solving (a): Lower Quartile
This is calculated as:
[tex]Q_1 =\frac{1}{4} * (N + 1)th[/tex]
[tex]Q_1 =\frac{1}{4} * (7 + 1)th[/tex]
[tex]Q_1 =\frac{1}{4} * 8th[/tex]
[tex]Q_1 = 2nd[/tex]
The 2nd data is 498
Hence:
[tex]Q_1 = 498[/tex]
Solving (b): Third Quartile
This is calculated as:
[tex]Q_3 =\frac{3}{4} * (N + 1)th[/tex]
[tex]Q_3 =\frac{3}{4} * (7 + 1)th[/tex]
[tex]Q_3 =\frac{3}{4} * (8)th[/tex]
[tex]Q_3 =6th[/tex]
The 6th data is 1052
Hence:
[tex]Q_3 =1052[/tex]
Solving (c): Interquartile Range
This is calculated as:
[tex]IR = Q_3 - Q_1[/tex]
[tex]IR = 1052- 498[/tex]
[tex]IR = 554[/tex]