Factor 6x4 - 5x2 + 12x2 – 10 by grouping. What is the resulting expression? O (6x + 5)(x2 - 2) O (6x - 5)(x2 + 2) (6x2 + 5)(x - 2) (6x2 - 5)(x2 + 2) ​

Respuesta :

Answer:

6x4 - 5x2 + 12x2 – 10 simplified is =6x^4+7x^2−10

6x4 - 5x2 + 12x2 – 10  factored is =(6x2−5)(x2+2)

Step-by-step explanation:

brainliest please?

Answer:

([tex]6x^{2} - 5[/tex])([tex]x^{2} +2[/tex])

Step-by-step explanation:

Always arrange in descending powers first.  In this case that is already done.

Try grouping the first two terms and the last two terms first

[tex](6x^{4} - 5x^{2} ) + (12x^{2} - 10)[/tex]   Factor out the GCF of both groups

[tex]x^{2} (6x^{2} - 5) + 2(6x^{2} - 5)\\[/tex]     Note that [tex]6x^{2} - 5[/tex] is a factor in each group. That's    

                                           good

Now treat [tex]6x^{2} - 5[/tex] as a GCF and you get

([tex]6x^{2} - 5[/tex])([tex]x^{2} +2[/tex])

Since  [tex]6x^{2} - 5[/tex]  and  [tex]x^{2} +2[/tex]  are both prime, we are finished.  

You can check to see if you are correct by FOILing the answer you got.  OK?