Answer:
0.1056
0.2642
Step-by-step explanation:
N = 400
P = 10%
n*p = 400*0.1 = 40
n(1-p) = 400 * 0.9 = 360
40 and 360 are greater than 5 so we use the normal distribution here to estimate further.
mean = n*p = 40
sd = [tex]\sqrt{np(1-p)}[/tex]
[tex]\sqrt{400*0.1(1-0.1)} \\= \sqrt{40(0.9)} \\= \sqrt{36} \\= 6[/tex]
p(X≥48)
= p(X≥47.5)
[tex]=P(Z<\frac{47.5-40}{6} )\\= P(Z<1.25)[/tex]
= 0.8944
1 - 0.8944
= 0.1056
FOR Y
N = 400 p = 0.25% = 0.0025
400 * 0.0025 = 1
1 is less than 5 so we use poisson distribution.
using the excel function,
1 - BINOMDIST(1, 400, 0.0025, TRUE)
= 1 - 0.735759074
= 0.2642