Which equation finds the volume of a cube with a side length of 2n^6 units?
a.(2n^6)^3=8n^18 cubic units
b. (2n^6)^3=2n^18 cubic units
c. 2(n^6)^3=2n^18 cubic units
d. 2(n^6)^3=6n^18 cubic units

Which equation finds the volume of a cube with a side length of 2n6 units a2n638n18 cubic units b 2n632n18 cubic units c 2n632n18 cubic units d 2n636n18 cubic u class=

Respuesta :

Given:

Side length of a cube is [tex]2n^6[/tex] units.

To find:

The equation for the volume of the cube.

Solution:

We know that, the volume of a cube is:

[tex]V=a^3[/tex]

Where, a is the side length of the cube.

Putting [tex]a=2n^6[/tex], we get

[tex]V=(2n^6)^3[/tex]

[tex]V=(2)^3(n^6)^3[/tex]          [tex][\because (ab)^m=a^mb^m][/tex]

[tex]V=8(n^{6\times 3})[/tex]         [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]V=8n^{18}[/tex]  

So, the volume of the cube is [tex](2n^6)^3=8n^{18}[/tex] cubic units.

Therefore, the correct option is A.

Answer:

Step-by-step explanation:

The answer is a