Respuesta :

Answer:

It landed at a height of 14 feet

Step-by-step explanation:

Given

[tex]y = -\frac{1}{8}x^2 +4x[/tex] --- Path of a t-shirt

[tex]3y = 2x - 14[/tex] --- height of bleachers

Required

Height when t-shirts land in bleachers

[tex]3y = 2x - 14[/tex]

Make y the subject

[tex]y = \frac{2}{3}x - \frac{14}{3}[/tex]

Substitute [tex]y = \frac{2}{3}x - \frac{14}{3}[/tex] in  [tex]y = -\frac{1}{8}x^2 +4x[/tex]

[tex]\frac{2}{3}x - \frac{14}{3} = -\frac{1}{8}x^2 +4x[/tex]

Multiply through by 24

[tex]16x- 112 = -3x^2 +96x[/tex]

Express as:

[tex]3x^2 + 16x -96x- 112 = 0[/tex]

[tex]3x^2 -80x- 112 = 0[/tex]

Using a calculator:

[tex]x = 28[/tex] or [tex]x = -\frac{4}{3}[/tex]

x can not be negative:

So:

[tex]x = 28[/tex]

Substitute [tex]x = 28[/tex] in [tex]y = -\frac{1}{8}x^2 +4x[/tex] to calculate the height it landed

[tex]y = -\frac{1}{8} * 28^2 + 4 * 28[/tex]

[tex]y = 14[/tex]