Find a point K on the segment with endpoints F(-8, 10) and G(8, -2) that
partitions the segment, starting at point F 3/4 of the way to point G

Respuesta :

Given:

The endpoints of a line segment are F(-8, 10) and G(8, -2).

Point K partitions the segment, starting at point F [tex]\dfrac{3}{4}[/tex] of the way to point G.

To find:

The coordinates of point K.

Solution:

Section formula: If a point divides a line segment in m:n, then the coordinates of that point are

[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]

According to the given information,

[tex]\dfrac{FK}{FG}=\dfrac{3}{4}[/tex]

[tex]FK:FG=3:4[/tex]

Now,

[tex]FK:KG=FK:(FG-FK)[/tex]

[tex]FK:KG=3:(4-3)[/tex]

[tex]FK:KG=3:1[/tex]

It means point K divides the segment in 3:1.

Using the section formula, we get

[tex]K=\left(\dfrac{3(8)+1(-8)}{3+1},\dfrac{3(-2)+1(10)}{3+1}\right)[/tex]

[tex]K=\left(\dfrac{24-8}{4},\dfrac{-6+10}{4}\right)[/tex]

[tex]K=\left(\dfrac{16}{4},\dfrac{4}{4}\right)[/tex]

[tex]K=\left(4,1\right)[/tex]

Therefore, the coordinates of the point K are (4,1).