Respuesta :

[tex]\\ \sf\longmapsto x+5+130=180[/tex]

[tex]\\ \sf\longmapsto x+135=180[/tex]

[tex]\\ \sf\longmapsto x=180-135[/tex]

[tex]\\ \sf\longmapsto x=45°[/tex]

[tex] \begin{cases}\large\bf{\red{ \longrightarrow}} \tt \: (x + 5) \degree \: + \: 130 \degree \: = \: 180 \degree \: \rm{\blue{ \bigg(Co-Interior \: angles \bigg)}} \\ \\ \large\bf{\red{ \longrightarrow}} \tt \:x \degree + \: 5\degree \: + \: 130 \degree \: = \: 180 \degree \\ \\ \large\bf{\red{ \longrightarrow}} \tt \: x \degree + 135 \degree \: = \: 180 \degree \\ \\ \large\bf{\red{ \longrightarrow}} \tt \:x \degree \: = \: 180 \degree \: - \: 135 \degree \\ \\ \large\bf{\red{ \longrightarrow}} \tt \:x \degree \: = \: 45 \degree\end{cases}[/tex]

  • Co-interior angles - A pair of angles between the two lines and on the same side of the transversal.