Respuesta :

Given:

The quadratic equation is

[tex]y=3x^2-18x+15[/tex]

To find:

The x-coordinate and y-coordinate of the vertex.

Solution:

If a quadratic function is defined by [tex]f(x)=ax^2+bx+c[/tex], then the vertex is defined as:

[tex]Vertex=\left(\dfrac{-b}{2a},f(\dfrac{-b}{2a})\right)[/tex]

If [tex]a<0[/tex], then the function has a maximum at the vertex and ff [tex]a>0[/tex], then the function has a minimum at the vertex.

We have,

[tex]y=3x^2-18x+15[/tex]

Here, [tex]a=3,b=-18,c=15[/tex].

Since [tex]a=3>0[/tex], therefore the function has a minimum at the vertex. So, fill min in first blank.

Now,

[tex]\dfrac{-b}{2a}=\dfrac{-(-18)}{2(3)}[/tex]

[tex]\dfrac{-b}{2a}=\dfrac{18}{6}[/tex]

[tex]\dfrac{-b}{2a}=3[/tex]

Putting x=3 in the given function, we get

[tex]y=3(3)^2-18(3)+15[/tex]

[tex]y=27-54+15[/tex]

[tex]y=-12[/tex]

Therefore, the vertex is at point (3,-12).