Let c be a positive number. A differential equation of the form dy/dt=ky^1+c where k is a positive constant, is called a doomsday equation because the exponent in the expression ky^1+c is larger than the exponent 1 for natural growth. An especially prolific breed of rabbits has the growth term My^1.01. If 2 such rabbits breed initially and the warren has 16 rabbits after three months, then when is doomsday?

Respuesta :

Answer:

The doomsday is 146 days

Step-by-step explanation:

Given

[tex]\frac{dy}{dt} = ky^{1 +c}[/tex]

First, we calculate the solution that satisfies the initial solution

Multiply both sides by

[tex]\frac{dt}{y^{1+c}}[/tex]

[tex]\frac{dt}{y^{1+c}} * \frac{dy}{dt} = ky^{1 +c} * \frac{dt}{y^{1+c}}[/tex]

[tex]\frac{dy}{y^{1+c}} = k\ dt[/tex]

Take integral of both sides

[tex]\int \frac{dy}{y^{1+c}} = \int k\ dt[/tex]

[tex]\int y^{-1-c}\ dy = \int k\ dt[/tex]

[tex]\int y^{-1-c}\ dy = k\int\ dt[/tex]

Integrate

[tex]\frac{y^{-1-c+1}}{-1-c+1} = kt+C[/tex]

[tex]-\frac{y^{-c}}{c} = kt+C[/tex]

To find c; let t= 0

[tex]-\frac{y_0^{-c}}{c} = k*0+C[/tex]

[tex]-\frac{y_0^{-c}}{c} = C[/tex]

[tex]C =-\frac{y_0^{-c}}{c}[/tex]

Substitute [tex]C =-\frac{y_0^{-c}}{c}[/tex] in [tex]-\frac{y^{-c}}{c} = kt+C[/tex]

[tex]-\frac{y^{-c}}{c} = kt-\frac{y_0^{-c}}{c}[/tex]

Multiply through by -c

[tex]y^{-c} = -ckt+y_0^{-c}[/tex]

Take exponents of [tex]-c^{-1[/tex]

[tex]y^{-c*-c^{-1}} = [-ckt+y_0^{-c}]^{-c^{-1}[/tex]

[tex]y = [-ckt+y_0^{-c}]^{-c^{-1}[/tex]

[tex]y = [-ckt+y_0^{-c}]^{-\frac{1}{c}}[/tex]

i.e.

[tex]y(t) = [-ckt+y_0^{-c}]^{-\frac{1}{c}}[/tex]

Next:

[tex]t= 3[/tex] i.e. 3 months

[tex]y_0 = 2[/tex] --- initial number of breeds

So, we have:

[tex]y(3) = [-ck * 3+2^{-c}]^{-\frac{1}{c}}[/tex]

-----------------------------------------------------------------------------

We have the growth term to be: [tex]ky^{1.01}[/tex]

This implies that:

[tex]ky^{1.01} = ky^{1+c}[/tex]

By comparison:

[tex]1.01 = 1 + c[/tex]

[tex]c = 1.01 - 1 = 0.01[/tex]

[tex]y(3) = 16[/tex] --- 16 rabbits after 3 months:

-----------------------------------------------------------------------------

[tex]y(3) = [-ck * 3+2^{-c}]^{-\frac{1}{c}}[/tex]

[tex]16 = [-0.01 * 3 * k + 2^{-0.01}]^{\frac{-1}{0.01}}[/tex]

[tex]16 = [-0.03 * k + 2^{-0.01}]^{-100}[/tex]

[tex]16 = [-0.03 k + 0.9931]^{-100}[/tex]

Take -1/100th root of both sides

[tex]16^{-1/100} = -0.03k + 0.9931[/tex]

[tex]0.9727 = -0.03k + 0.9931[/tex]

[tex]0.03k= - 0.9727 + 0.9931[/tex]

[tex]0.03k= 0.0204[/tex]

[tex]k= \frac{0.0204}{0.03}[/tex]

[tex]k= 0.68[/tex]

Recall that:

[tex]-\frac{y^{-c}}{c} = kt+C[/tex]

This implies that:

[tex]\frac{y_0^{-c}}{c} = kT[/tex]

Make T the subject

[tex]T = \frac{y_0^{-c}}{kc}[/tex]

Substitute: [tex]k= 0.68[/tex], [tex]c = 0.01[/tex] and [tex]y_0 = 2[/tex]

[tex]T = \frac{2^{-0.01}}{0.68 * 0.01}[/tex]

[tex]T = \frac{2^{-0.01}}{0.0068}[/tex]

[tex]T = \frac{0.9931}{0.0068}[/tex]

[tex]T = 146.04[/tex]

The doomsday is 146 days