Answer:
[tex]Column\ 1: 4y^2[/tex]
[tex]Column\ 2: 6x^3+4xy+3y[/tex]
Step-by-step explanation:
Given
[tex]24x^3y^2+16xy^3+12y^3[/tex]
Required
Determine the product from the given column
[tex]24x^3y^2+16xy^3+12y^3[/tex]
Factor our [tex]y^2[/tex]
[tex]24x^3y^2+16xy^3+12y^3 = y^2(24x^3 + 16xy + 12y)[/tex]
Factor out 4
[tex]24x^3y^2+16xy^3+12y^3 = 4y^2(6x^3 + 4xy + 3y)[/tex]
So: the factors are:
[tex]4y^2[/tex] and [tex]6x^3 + 4xy + 3y[/tex]
This gives:
[tex]Column\ 1: 4y^2[/tex]
[tex]Column\ 2: 6x^3+4xy+3y[/tex]