Respuesta :

Answer:

The area of LQM is [tex]48cm^2[/tex]

Step-by-step explanation:

Given

Area of PNQ = 8

Area of LPQ = 16

See attachment for triangles

The area of PNQ is calculated as:

[tex]Area = \frac{1}{2} * PQ * PN[/tex]

Substitute 8 for Area

[tex]8 = \frac{1}{2} * PQ * PN[/tex]

[tex]PQ * PN = 16[/tex]

The area of LPQ is calculated as:

[tex]Area = \frac{1}{2} * PQ * LP[/tex]

Substitute 16 for Area

[tex]16= \frac{1}{2} * PQ * LP[/tex]

From the attachment:

[tex]PN + LP =LN[/tex]

Make LP the subject

[tex]LP = LN -PN[/tex]

So:

[tex]16= \frac{1}{2} * PQ * (LN -PN)[/tex]

We have:

[tex]16= \frac{1}{2} * PQ * (LN -PN)[/tex] and [tex]PQ * PN = 16[/tex]

Equate both expressions:

[tex]\frac{1}{2} * PQ *(LN - PN) = PQ * PN[/tex]

Divide both sides by PQ

[tex]\frac{1}{2} (LN - PN) = PN[/tex]

Multiply both sides by 2

[tex]LN - PN = 2PN[/tex]

[tex]LN= 3PN[/tex]

Since PNQ is similar to LNM, the following equivalent ratios exist:

[tex]\frac{LM}{PQ} = \frac{LN}{PN}[/tex]

Substitute [tex]LN= 3PN[/tex]

[tex]\frac{LM}{PQ} = \frac{3PN}{PN}[/tex]

[tex]\frac{LM}{PQ} = 3[/tex]

[tex]LM = 3PQ[/tex]

Area of LQM is:

[tex]Area = \frac{1}{2} * LM * LP[/tex]

This gives:

[tex]Area = \frac{1}{2} * 3PQ * LP[/tex]

[tex]Area = 3 *\frac{1}{2} *PQ * LP[/tex]

Recall that:

[tex]16= \frac{1}{2} * PQ * LP[/tex]

So:

[tex]Area = 3 *16[/tex]

[tex]Area = 48cm^2[/tex]

Ver imagen MrRoyal