What is the resulting integral?

Answer:
[tex]\displaystyle \int {\frac{2}{(1 + \sqrt{x})^5}} \, dx = \frac{-(4\sqrt{x} + 1)}{3(\sqrt{x} + 1)^4} + C[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Algebra I
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
Antiderivatives - Integrals
Integration Constant C
U-Substitution
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \int {\frac{2}{(1 + \sqrt{x})^5}} \, dx[/tex]
Step 2: Identify Variables
Find the variables u-solve using u-substitution.
U-Substitution
[tex]\displaystyle u = 1 + \sqrt{x}[/tex]
[tex]\displaystyle du = \frac{1}{2\sqrt{x}}dx[/tex]
U-Solve
[tex]\displaystyle x = (u - 1)^2[/tex]
[tex]\displaystyle dx = 2\sqrt{x}du[/tex]
Step 3: Integration
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration
Book: College Calculus 10e