Cubic equation that has been transformed from the parent function with a vertical compression, reflected over the y-axis and shifted up.

Respuesta :

Question is incomplete

Answer:

See Explanation

Step-by-step explanation:

Let the cubic function be

[tex]f(x) = (x,y)[/tex]

First transformation: Vertical compression

Let the scale factor be a where [tex]0 < |a| < 1[/tex]

The new function becomes:

[tex]f'(x) = (x,ay)[/tex]

Next: Reflection over y-axis

The rule is: [tex](x,y)=>(-x,y)[/tex]

The new function becomes:

[tex]f"(x) = (-x,ay)[/tex]

Lastly: Shifted up

Let the units up be b

The rule is: [tex](x,y)=>(x,y+b)[/tex]

So, the new function becomes:

[tex]f"'(x) = (-x,ay+b)[/tex]

Using the rules states above, assume the cubic function is:

[tex]f(x) = x^3[/tex]

Vertical compress [tex]f(x) = x^3[/tex] by [tex]\frac{1}{2}[/tex]

[tex]f'(x) = \frac{1}{2}x^3[/tex]

Reflect [tex]f'(x) = \frac{1}{2}x^3[/tex] over y-axis

Rule: [tex]f"(x)= f'(-x)[/tex]

Solving f'(-x)

[tex]f'(x) = \frac{1}{2}x^3[/tex]

[tex]f'(-x) = \frac{1}{2}(-x)^3[/tex]

[tex]f'(-x) = -\frac{1}{2}x^3[/tex]

So:

[tex]f"(x) = -\frac{1}{2}x^3[/tex]

Lastly: Shift [tex]f"(x) = -\frac{1}{2}x^3[/tex] by 3

Rule: [tex](x,y)=>(x,y+b)[/tex]

[tex]f'"(x) = f"(x + 3)[/tex]

Solving: f"(x + 3)

[tex]f"(x) = -\frac{1}{2}x^3[/tex]

Substitute x + 3 for x

[tex]f"(x + 3) = -\frac{1}{2}(x + 3)^3[/tex]

So:

[tex]f'"(x) = f"(x + 3)[/tex]

[tex]f"'(x) = -\frac{1}{2}(x + 3)^3[/tex]