Respuesta :

Answer and Step-by-step explanation:

For this, you would need to use the trigonometric function Sine and cosine.

The trig equations are:

sin(θ) = [tex]\frac{opposite - side}{hypotenuse}[/tex]

cos(θ) = [tex]\frac{adjacent-side }{hypotenuse}[/tex]

Let's start with Sine:

sin(60) = [tex]\frac{x}{10\sqrt{3} }[/tex]

Multiply both sides of the equation by [tex]10\sqrt{3}[/tex].

[tex]10\sqrt{3} (sin(60)) = x[/tex]

Input into calculator and solve.

x = 15

Now for Cosine:

cos(60) = [tex]\frac{y}{10\sqrt{3} }[/tex]

Multiply both sides of the equation by [tex]10\sqrt{3}[/tex].

[tex]10\sqrt{3} (cos(60)) = x[/tex]

Input into calculator and solve.

y = [tex]5\sqrt{3}[/tex]

x = 15

y = [tex]5\sqrt{3}[/tex]

These are the answers.

I hope this helps!

#teamtrees #PAW (Plant And Water)

Step-by-step explanation:

It's a right triangle with one of the angles being 60°. This means that the leftover angle is 30°. This allows me to use the attached screenshot as a reference, so please check it out if you want to understand how to easily solve those types of equations in the future. Anyway, we can specify the hypotenuse as [tex]a[/tex] .

First, let's calculate the value of [tex]y[/tex].

[tex]a[/tex] = [tex]10\sqrt{3}[/tex]

[tex]y[/tex] = [tex]\frac{a}{2}[/tex]

[tex]y[/tex] = [tex]\frac{10\sqrt{3} }{2}[/tex]

[tex]y[/tex] = [tex]5\sqrt{3}[/tex]

----

Now, let's get to [tex]x[/tex]

[tex]a[/tex] = [tex]10\sqrt{3}[/tex]

[tex]x[/tex] = [tex]\frac{a\sqrt{3} }{2}[/tex]

[tex]x[/tex] = [tex]\frac{10 \sqrt{3} * \sqrt{3}}{2}[/tex]

[tex]x[/tex] = [tex]\frac{10 * 3}{2}[/tex]

[tex]x[/tex] = [tex]\frac{30}{2}[/tex]

[tex]x[/tex] = [tex]15[/tex]

----

[tex]x[/tex] = [tex]15[/tex] and [tex]y[/tex] = [tex]5\sqrt{3}[/tex]

Ver imagen voytequal3