[tex] \frac{7i}{8+i}
\\
\\ \frac{7i}{8+i} \times \frac{8-i}{8-i}
\\
\\ \frac{7i(8-i)}{(8+i)(8-i)}
\\
\\ \frac{56i-7i^2}{64-i^2}
\\
\\ \frac{56i-7(-1)}{64-(-1)}
\\
\\ \frac{56i+7}{64+1}
\\
\\ \frac{56i+7}{65}
\\
\\ \frac{56}{65}i + \frac{7}{65} [/tex]