Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = \frac{-\pi}{4} \sin \bigg( \frac{\pi t}{4} \bigg)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \cos \bigg( \frac{\pi t}{4} \bigg)[/tex]

Step 2: Differentiate

  1. Trigonometric Differentiation [Derivative Rule - Chain Rule]:                   [tex]\displaystyle y' = -\sin \bigg( \frac{\pi t}{4} \bigg) \cdot \frac{d}{dt} \bigg[ \frac{\pi t}{4} \bigg][/tex]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   [tex]\displaystyle y' = -\sin \bigg( \frac{\pi t}{4} \bigg) \cdot \frac{\pi}{4} \frac{d}{dt}[t][/tex]
  3. Basic Power Rule:                                                                                         [tex]\displaystyle y' = \frac{-\pi}{4}\sin \bigg( \frac{\pi t}{4} \bigg)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation