Respuesta :
(1−2x^2−2y)y′=4x^3+4xy
(1−2x^2−2y)dy=(4x^3+4xy)dx
(4x^3+4xy)dx+(−1+2x^2+2y)dy=0
f(x,y)=C;df(x,y)=∂f/∂x(dx)+∂f/∂y(dy)=0
∂f /∂x=4x^3+4xy⇒f(x,y)=x^4+2x^2y+g(y)
∂f/∂y=−1+2x^2+2y=2x^2+∂g/∂y⇒∂g/∂y=2y−1
g(y)=y^2−y⇒f(x,y)=x^4+2x^2y+y^2−y=(x^2+y)2−y=C
(1−2x^2−2y)dy=(4x^3+4xy)dx
(4x^3+4xy)dx+(−1+2x^2+2y)dy=0
f(x,y)=C;df(x,y)=∂f/∂x(dx)+∂f/∂y(dy)=0
∂f /∂x=4x^3+4xy⇒f(x,y)=x^4+2x^2y+g(y)
∂f/∂y=−1+2x^2+2y=2x^2+∂g/∂y⇒∂g/∂y=2y−1
g(y)=y^2−y⇒f(x,y)=x^4+2x^2y+y^2−y=(x^2+y)2−y=C
Answer:
[tex]u=-x^4-2x^2y+y-y^2[/tex]
Step-by-step explanation:
We are given that
[tex](1-2x^2-2y)\frac{dy}{dx}=4x^3+4xy[/tex]
We have to solve the given differential equation
[tex](1-2x^2-2y)dy=(4x^3+4xy)dx[/tex]
[tex](1-2x^2-2y)dy-(4x^3+4xy)dx=0[/tex]
Compare with [tex]Mdx+ndy=0[/tex]
Then, we get [tex]M=-(4x^3+4xy),N=(1-2x^2-2y)[/tex]
Exact differential equation
[tex]M_y=N_x[/tex]
[tex]M_y=-4x[/tex]
[tex]N_x=-4x[/tex]
[tex]M_y=N_x[/tex]
Hence, the differential equation is an exact differential equation.
Solution of exact differential is given by
[tex]u=\int M(x,y)dx+K(y)[/tex] where K(y) is a function of y.
[tex]u=\int -(4x^3+4xy) dx+k(y)[/tex] y treated as constant
[tex]u=-x^4-2x^2y+k(y)[/tex]
[tex]u_y=N[/tex]
[tex]-2x^2+k'(y)=1-2x^2-2y[/tex]
[tex]K'(y)=1-2y[/tex]
[tex]k(y)=y-y^2[/tex]
Substitute the value then we get
Then, [tex]u=-x^4-2x^2y+y-y^2[/tex]