Which of the following could be an example of a function with a range (-∞,a] and a domain [b, ∞) where a < 0 and b < 0?
A. ƒ(x)= √(x-a)+b
B. ƒ(x)=3√(x-b)+a
C. ƒ(x)=-3√(x+a)-b
D. ƒ(x)=-√(x+b)-a ...?

Respuesta :

the answers are
B. ƒ(x)=3√(x-b)+a  for [b, ∞)

proof
B. ƒ(x)=3√(x-b)+a  for [b, ∞)
the domain is x-b>=0 implies x>=b it is the same of x is element of [b, ∞)