Respuesta :

The right option is 4.

Answer: A. 4


Step-by-step explanation:

The characteristic equation of a circle is

[tex]x^2+y^2=r^2[/tex]

The characteristic equation of a hyperbola is

[tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/tex]

The intersection points will be obtained as the solution of the both characteristic equations.

[tex]x^2+y^2=r^2[/tex].......(1)

[tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/tex].............(2)

⇒[tex]y^2=r^2-x^2[/tex].....(from 1)

put this in (2)

[tex]\frac{x^2}{a^2}-\frac{r^2-x^2}{b^2}=1[/tex]

⇒[tex]y^2=r^2-x^2\\\frac{x^2}{a^2}+\frac{-x^2}{b^2}=1+\frac{r^2}{b^2}[/tex]

⇒[tex]y^2=r^2-x^2\\x^2(\frac{1}{a^2}+\frac{1}{b^2})=1+\frac{r^2}{b^2}[/tex]

⇒[tex]y^2=r^2-x^2\\x^2(\frac{a^2+b^2}{a^2b^2})=\frac{b^2+r^2}{b^2}[/tex]

[tex]\Rightarrow\ x^2=\frac{a^2(b^2+r^2)}{a^2+b^2}\\y^2=\frac{b^2(r^2-a^2)}{a^2+b^2}[/tex]

So there are 2 different values of x and two different values of y, thus the maximum number of intersection points  is 4.