Respuesta :
we know that
the euclid's division A/B implies A= BQ + R
wher Q = the quotient, and R is the remainder
after doing euclid's division, (3x^3+15x^2+17x+3)/x+5 = 3x²+17and R= - 82
so (3x^3+15x^2+17x+3= (3x²+17) (x+5) -82
the answer is x^3+15x^2+17x+3= (3x²+17) (x+5) - 82
the euclid's division A/B implies A= BQ + R
wher Q = the quotient, and R is the remainder
after doing euclid's division, (3x^3+15x^2+17x+3)/x+5 = 3x²+17and R= - 82
so (3x^3+15x^2+17x+3= (3x²+17) (x+5) -82
the answer is x^3+15x^2+17x+3= (3x²+17) (x+5) - 82
Answer:
option (c) is correct,
[tex]3x^2+17-\frac{82}{x+5}[/tex] is the equivalent fraction to the given expression [tex]\frac{3x^3+15x^2+17x+3}{x+5}[/tex]
Step-by-step explanation:
Given expression , [tex]\frac{3x^3+15x^2+17x+3}{x+5}[/tex]
We have to choose an equivalent fraction from the given options.
Consider expression (c) ,
[tex]3x^2+17-\frac{82}{x+5}[/tex]
Taking LCM , Multiply [tex]3x^2+17[/tex] by (x+5) , we get,
[tex]\frac{3x^2(x+5)+17(x+5)-82}{x+5}[/tex]
On solving , we get,
[tex]\frac{3x^3+15x^2+17x+85-82}{x+5}[/tex]
On simplifying, we get,
[tex]\frac{3x^3+15x^2+17x+3}{x+5}[/tex]
Which is equal to the given expression.
Thus, option (c) is correct,
[tex]3x^2+17-\frac{82}{x+5}[/tex] is the equivalent fraction to the given expression [tex]\frac{3x^3+15x^2+17x+3}{x+5}[/tex]