Respuesta :
The answer is: (z - 6)(z + 15)
z² + 9z - 90 = z*z + 15z - 6z - 6*15 =
= (z*z + 15z) - (6z + 6*15) =
= z(z + 15) - 6(z + 15) =
= (z - 6)(z + 15)
z² + 9z - 90 = z*z + 15z - 6z - 6*15 =
= (z*z + 15z) - (6z + 6*15) =
= z(z + 15) - 6(z + 15) =
= (z - 6)(z + 15)
Answer:
Answer would be 15.
Step-by-step explanation:
We have to complete the expression given as
[tex]z^{2}+9z-90=(z-6)(z+?))[/tex]
We will try to factorize the expression given in the left side.
[tex]z^{2}+9z-90=z^{2}+15z-6z-90[/tex]
= z(z+15)-6(z-15)
=[tex](z-6)(z-15)[/tex]
Now we will compare this factorized form with the right side of the expression.
(z-6) (z-15) (= (z-6) (z+?)
We find question mark is 15.
Therefore, the answer is 15.