Respuesta :
the answer is straightforward
F(1)=7, and G(1)=6, so (FoG)(1)=F(G(1))=F(6)=17
F(1)=7, and G(1)=6, so (FoG)(1)=F(G(1))=F(6)=17
Answer:
value of [tex](f o g)(1)[/tex] is, 17
Step-by-step explanation:
We have to find the [tex](f o g)(1)[/tex]
Using the given tables;
[tex](f o g)(1) = f(g(1))[/tex] ......[1]
At x = 1
g(1) = 6
Substitute this in [1] we have;
[tex](f o g)(1) = f(6)[/tex]
At x = 6
f(6) = 17
then;
[tex](f o g)(1) = 17[/tex]
Therefore, the value of [tex](f o g)(1)[/tex] is, 17