Respuesta :
f(x) = 2x-10
y = 2x -10
Switch y and x,
x = 2y -10
solve for y,
x + 10 = 2y
x/2 + 10/2 = y
x/2 + 5 = y
y = x/2 + 5 or h(x) = x/2 + 5
Hence, the inverse of the function f(x) = 2x-10 is h(x) = x/2 + 5
y = 2x -10
Switch y and x,
x = 2y -10
solve for y,
x + 10 = 2y
x/2 + 10/2 = y
x/2 + 5 = y
y = x/2 + 5 or h(x) = x/2 + 5
Hence, the inverse of the function f(x) = 2x-10 is h(x) = x/2 + 5
The inverse of a function is gotten by swapping the x and y coordinates.
The inverse of function f(x) is[tex]h(x) = \frac x2 + 5[/tex]
Given
[tex]f(x) = 2x - 10[/tex]
Rewrite as:
[tex]y = 2x - 10[/tex]
Swap x and y
[tex]x = 2y - 10[/tex]
Solve for y
[tex]2y = x + 10[/tex]
Divide by 2
[tex]y = \frac x2 + 5[/tex]
So, we have:
[tex]h(x) = \frac x2 + 5[/tex]
Hence, the inverse function is[tex]h(x) = \frac x2 + 5[/tex]
Read more about inverse function at:
https://brainly.com/question/15912209