Respuesta :

f(x) = 2x-10
y = 2x -10
Switch y and x,
x = 2y -10
solve for y,
x + 10 = 2y
x/2 + 10/2 = y
x/2 + 5 = y
y = x/2 + 5  or  h(x) = x/2  + 5
Hence, the inverse of the function f(x) = 2x-10 is h(x) = x/2  + 5

The inverse of a function is gotten by swapping the x and y coordinates.

The inverse of function f(x)  is[tex]h(x) = \frac x2 + 5[/tex]

Given

[tex]f(x) = 2x - 10[/tex]

Rewrite as:

[tex]y = 2x - 10[/tex]

Swap x and y

[tex]x = 2y - 10[/tex]

Solve for y

[tex]2y = x + 10[/tex]

Divide by 2

[tex]y = \frac x2 + 5[/tex]

So, we have:

[tex]h(x) = \frac x2 + 5[/tex]

Hence, the inverse function is[tex]h(x) = \frac x2 + 5[/tex]

Read more about inverse function at:

https://brainly.com/question/15912209