Answer:
A. The student followed all rules correctly and solved for c
Step-by-step explanation:
Given the equation [tex]3c + 6 - 4c = 12 c + 7[/tex], the student followed all rules correctly because:
- step 1: He combined like terms correctly for c in the left side from the equation
[tex]3c - 4c = - c[/tex]
- step 2: he subtracted 6 from both sides
[tex]-c +6 + (-6) = 12c +7+(-6)[/tex]
- step 3: To isolate “c”, he substracted 12c from both sides
[tex]-c +(-12c) = 12c +(-12c) +1[/tex]
- Step 4: finally he divided both sides by [tex]-13[/tex]
[tex]-\frac{13c}{13}= -\frac{1}{13}[/tex]
And he got it:
[tex]c = -\frac{1}{13}[/tex]
Now we´ll check this work with the original equation:
[tex]3c + 6 - 4c = 12 c + 7[/tex]
[tex]3(-\frac{1}{13}) + 6 - 4(-\frac{1}{13}) = 12(-\frac{1}{13}) + 7[/tex]
[tex]-\frac{3}{13} + 6 +\frac{4}{13} = -\frac{12}{13} +7[/tex]
[tex]6 + \frac{1}{13} = \frac{79}{13}[/tex]
[tex]\frac{79}{13} = \frac{79}{13}[/tex]
Very good √