Answer:
Length of BO is three times the length of DO.
Step-by-step explanation:
In trapezoid ABCD, [tex]CD\ ||\ AB[/tex]
In ΔCDO and ΔABO,
- [tex]m\angle CDO=m\angle ABO[/tex] (Alternate interior angles)
- [tex]m\angle DCO=m\angle BAO[/tex] (Alternate interior angles)
So, [tex]\Delta CDO\sim \Delta ABO[/tex] according to Angle-Angle similarity.
Therefore, the ratio of corresponding sides will be same.
[tex]\Rightarrow \dfrac{OD}{OB}=\dfrac{OC}{OA}[/tex]
[tex]\Rightarrow \dfrac{OD}{OB}=\dfrac{OC}{3\cdot OC}[/tex]
[tex]\Rightarrow \dfrac{OD}{OB}=\dfrac{1}{3}[/tex]
[tex]\Rightarrow OB=3\cdot OD[/tex]