Find the measure of angle P in the triangle below

Answer:
[tex]\displaystyle 53°[/tex]
Step-by-step explanation:
We will be using the Law of Cosines to find the [tex]\displaystyle m∠P,[/tex] therefore we will use the given variables in the formulas:
Solving for Angles
[tex]\displaystyle \frac{p^2 + q^2 - r^2}{2pq} = cos∠R \\ \frac{p^2 - q^2 + r^2}{2pr} = cos∠Q \\ \frac{-p^2 + q^2 + r^2}{2qr} = cos∠P[/tex]
**Use [tex]\displaystyle cos^{-1}[/tex] in your solution or it will be thrown off!
Solving for Sides
[tex]\displaystyle p^2 + q^2 - 2pq\:cos∠R = r^2 \\ p^2 + r^2 - 2pr\:cos∠Q = q^2 \\ q^2 + r^2 - 2qr\:cos∠P = p^2[/tex]
**Perfourm the square root in your solution or it will be thrown off!
------------------------------------------------------------------------------------------
[tex]\displaystyle \frac{-48^2 + 60^2 + 36^2}{2[60][36]} = cos∠P → \frac{-2304 + 3600 + 1296}{4320} = cos∠P → \frac{2592}{4320} = cos∠P → \frac{3}{5} = cos∠P → 53,13010235° ≈ cos^{-1}\:\frac{3}{5} \\ \\ 53,13010235° ≈ m∠P → 53° ≈ m∠P[/tex]
I am delighted to assist you at any time. ☺️