Respuesta :

[tex]60^2=48^2+36^2\Rightarrow \triangle{PQR} \text{ is a right triangle}\Rightarrow \angle{Q}=90^o[/tex]

[tex]\sin{\angle{P}}= \frac{48}{60} =0.8 \\ \\\angle{P}=\arcsin{0.8}=53.13^o[/tex]

Answer:

[tex]\displaystyle 53°[/tex]

Step-by-step explanation:

We will be using the Law of Cosines to find the [tex]\displaystyle m∠P,[/tex] therefore we will use the given variables in the formulas:

Solving for Angles

[tex]\displaystyle \frac{p^2 + q^2 - r^2}{2pq} = cos∠R \\ \frac{p^2 - q^2 + r^2}{2pr} = cos∠Q \\ \frac{-p^2 + q^2 + r^2}{2qr} = cos∠P[/tex]

**Use [tex]\displaystyle cos^{-1}[/tex] in your solution or it will be thrown off!

Solving for Sides

[tex]\displaystyle p^2 + q^2 - 2pq\:cos∠R = r^2 \\ p^2 + r^2 - 2pr\:cos∠Q = q^2 \\ q^2 + r^2 - 2qr\:cos∠P = p^2[/tex]

**Perfourm the square root in your solution or it will be thrown off!

------------------------------------------------------------------------------------------

[tex]\displaystyle \frac{-48^2 + 60^2 + 36^2}{2[60][36]} = cos∠P → \frac{-2304 + 3600 + 1296}{4320} = cos∠P → \frac{2592}{4320} = cos∠P → \frac{3}{5} = cos∠P → 53,13010235° ≈ cos^{-1}\:\frac{3}{5} \\ \\ 53,13010235° ≈ m∠P → 53° ≈ m∠P[/tex]

I am delighted to assist you at any time. ☺️