Respuesta :

a.
[tex] \sqrt{0+25} =5[/tex]

b. 
[tex] \sqrt{ cos^{2} 5pi/7 +sin^{2} 5pi/7 } = \sqrt{1} =1[/tex]

I hope that this is the answer that you were looking for and it has helped you.

Answer and Explanation:

To find : Compute the modulus and argument of each complex number?

Solution :

a) [tex]-5i[/tex]

When the complex number is in the form [tex]z=a+ib[/tex]

Then the modulus of z is [tex]|z|=\sqrt{a^2+b^2}[/tex] and argument is [tex]\theta=\tan^{-1}(\frac{b}{a})[/tex]

On comparing with given complex number, a=0 and b=-5

Substitute in formulas,

The modulus of z is [tex]|z|=\sqrt{0^2+(-5)^2}=\sqrt{25}=5[/tex]

The argument of z is [tex]\theta=\tan^{-1}(\frac{-5}{0})=\tan^{-1}(\tan(90))=90^\circ[/tex]

b) [tex]\sqrt{10}(\cos(\frac{5\pi}{7})+i\sin(\frac{5\pi}{7}))[/tex]

When the complex number is in the polar form [tex]z=r(\cos\theta+i\sin\theta)[/tex]

Then the modulus of z is r and argument is [tex]\theta[/tex].

On comparing with given complex number,

The modulus of z is [tex]r=\sqrt{10}[/tex]

The argument of z is [tex]\theta=\frac{5\pi}{7}[/tex]