Respuesta :

Answer:

(a)

[tex]f(x) = \left \{ {{5x;\ 0<x\le 5} \atop {5x-5; x > 5}} \right.[/tex]

(b) Rate = 5

(c) Rate = 5

Step-by-step explanation:

Given

The attached graph

Solving (a): The piece-wise function

For the first line

Calculate the slope of the first line

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where

[tex](x_1,y_1) = (0,0)[/tex]

[tex](x_2,y_2) = (5,25)[/tex]

So, the slope is:

[tex]m = \frac{25 - 0}{5 - 0}[/tex]

[tex]m = \frac{25}{5}[/tex]

[tex]m = 5[/tex]

The equation is then calculated as:

[tex]y = m(x - x_1) + y_1[/tex]

Where: [tex]m = 5[/tex] and [tex](x_1,y_1) = (0,0)[/tex]

[tex]y = 5(x - 0) + 0[/tex]

[tex]y = 5(x) + 0[/tex]

[tex]y = 5x[/tex]

So, the function of the first line is:

[tex]f(x) = 5x;\ 0 < x \le 5[/tex]

For the second line

Calculate the slope of the second line

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where

[tex](x_1,y_1) = (5,20)[/tex]

[tex](x_2,y_2) = (9,40)[/tex]

So, the slope is:

[tex]m = \frac{40 - 20}{9 - 5}[/tex]

[tex]m = \frac{20}{4}[/tex]

[tex]m = 5[/tex]

The equation is then calculated as:

[tex]y = m(x - x_1) + y_1[/tex]

Where: [tex]m = 5[/tex] and [tex](x_1,y_1) = (5,20)[/tex]

[tex]y = 5(x - 5) + 20[/tex]

[tex]y = 5x - 25 + 20[/tex]

[tex]y = 5x -5[/tex]

So, the function of the second line is:

[tex]f(x) = 5x -5;\ x>5[/tex]

Hence, the piece-wise function is:

[tex]f(x) = \left \{ {{5x;\ 0<x\le 5} \atop {5x-5; x > 5}} \right.[/tex]

Solving (b): The rate at which customers that buy up to 5lb buy.

[tex]x = 5[/tex]

This question implies that, we determine the rate at which this customer buys.

For [tex]x = 5[/tex]

[tex]f(x) = 5x;\ 0 < x \le 5[/tex]

The slope of the above function is 5.

So, this customer buys at the rate of $5 per lb

Solving (b): The rate at which customers that buy more than 5lb buy the extra pounds above 5lb.

For [tex]x > 5[/tex]

[tex]f(x) = 5x -5;\ x>5[/tex]

Assume x = 6

[tex]f(6) = 5 * 6 - 5[/tex]

[tex]f(6) = 30 - 5[/tex]

[tex]f(6) = 25[/tex]

Express as 20 + 5

[tex]f(6) = 20 + 5 * 1[/tex]

Assume x = 7

[tex]f(7) = 5 * 7 - 5[/tex]

[tex]f(7) = 35 - 5[/tex]

[tex]f(7) = 30[/tex]

[tex]f(7) = 20 + 10[/tex]

Express 10 as 5 * 2

[tex]f(7) = 20 + 5 * 2[/tex]

So, we have:

[tex]f(6) = 20 + 5 * 1[/tex]

[tex]f(7) = 20 + 5 * 2[/tex]

This can be generalized as:

[tex]f(x) = 20 + 5(x - 5)[/tex]

For the above functions;

20 represents the amount they buy the first 5

5 represents the rate at which they buy extra pounds above 5

Hence, they buy the extra pounds at the rate of $5 per pound