Write each expression as an algebraic (nontrigonometric) expression in u, u > 0.
sin(2sec^-1 u/10)

Answer:
[tex]\displaystyle \sin\left(2\sec^{-1}\left(\frac{u}{10}\right)\right)=\frac{20\sqrt{u^2-100}}{u^2}\text{ where } u>0[/tex]
Step-by-step explanation:
We want to write the trignometric expression:
[tex]\displaystyle \sin\left(2\sec^{-1}\left(\frac{u}{10}\right)\right)\text{ where } u>0[/tex]
As an algebraic equation.
First, we can focus on the inner expression. Let θ equal the expression:
[tex]\displaystyle \theta=\sec^{-1}\left(\frac{u}{10}\right)[/tex]
Take the secant of both sides:
[tex]\displaystyle \sec(\theta)=\frac{u}{10}[/tex]
Since secant is the ratio of the hypotenuse side to the adjacent side, this means that the opposite side is:
[tex]\displaystyle o=\sqrt{u^2-10^2}=\sqrt{u^2-100}[/tex]
By substitutition:
[tex]\displaystyle= \sin(2\theta)[/tex]
Using an double-angle identity:
[tex]=2\sin(\theta)\cos(\theta)[/tex]
We know that the opposite side is √(u² -100), the adjacent side is 10, and the hypotenuse is u. Therefore:
[tex]\displaystyle =2\left(\frac{\sqrt{u^2-100}}{u}\right)\left(\frac{10}{u}\right)[/tex]
Simplify. Therefore:
[tex]\displaystyle \sin\left(2\sec^{-1}\left(\frac{u}{10}\right)\right)=\frac{20\sqrt{u^2-100}}{u^2}\text{ where } u>0[/tex]