Respuesta :

Answer (assuming it can be in point-slope form):

[tex]y + 8 = \frac{1}{3} (x+6)[/tex]

Step-by-step explanation:

With the given information, we can use the point-slope formula, [tex]y-y_1 = m (x-x_1)[/tex], to write the equation of the line. Substitute values for the [tex]m[/tex] , [tex]x_1[/tex], and [tex]y_1[/tex] in the formula to do so.

The [tex]m[/tex] represents the slope, so substitute [tex]\frac{1}{3}[/tex] in its place. The [tex]x_1[/tex] and [tex]y_1[/tex] represent the x and y values of one point the line intersects, so substitute -6 for [tex]x_1[/tex] and -8 for [tex]y_1[/tex]. This gives the following answer and equation (just make sure to convert the double negatives into positives:  

[tex]y-(-8) = \frac{1}{3} (x-(-6))\\y + 8 = \frac{1}{3} (x+6)[/tex]

Answer:

x^2 = (28)^2 + (45)^2

= 784 + 2025

= 2809

x = 53