Respuesta :

Answer:

[tex] - \frac{8}{\pi} [/tex]

Step-by-step explanation:

Use slope formula.

Rise over run.

Or

y over x.

[tex] \frac{ {y}^{2} - y {}^{1} }{ {x}^{2} - x {}^{1} } [/tex]

Over changes in x value would be - 3/4 pi.

Plug in seepage intervals for x to find y.

[tex]6 \cos(2(\pi) - 4[/tex]

In the regular function,

[tex] \cos(\pi) = 1[/tex]

Since our period is 2, it would stay the same since 1x2=2

Since our amplitude is 6, our y value now is 6.

Since our vertical shift is -4, our y value is 2.

So

[tex]6 \cos(2(\pi)) - 4 = 2[/tex]

[tex] {x}^{2} = \pi \: \: \: \: {y}^{2} = 2[/tex]

Let do the other point,

[tex] \cos( \frac{\pi}{4} ) = \frac{ \sqrt{2} }{2} [/tex]

Our period is 2 so

[tex] \frac{ {\pi} }{4} \times \frac{2}{1} = \frac{\pi}{2} [/tex]

[tex] \cos( \frac{\pi}{2} ) = 0[/tex]

Multiply this by 6.

It stays 0 then subtract 4 we get

[tex]6 \cos(2( \frac{\pi}{4} )) - 4 = - 4[/tex]

Use the earlier formula, slope

[tex] \frac{2 + 4}{ - \frac{3\pi}{4} } = - \frac{8}{\pi} [/tex]