Answer:
[tex]y=-\frac{1}{4}x+40[/tex]
Step-by-step explanation:
Given
See attachment for graph
Required
Determine the equation of the line of best fit
First, calculate the slope (m)
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
From the graph, we can have:
[tex](x_1,y_1) = (20,35)[/tex]
[tex](x_2,y_2) = (60,25)[/tex]
So, the slope is:
[tex]m = \frac{25 -35}{60 - 20}[/tex]
[tex]m = \frac{-10}{40}[/tex]
[tex]m = -\frac{1}{4}[/tex]
The equation is then calculated as:
[tex]y = m(x - x_1) + y_1[/tex]
[tex]y = -\frac{1}{4}(x - 20) + 35[/tex]
[tex]y = -\frac{1}{4}x + 5 + 35[/tex]
[tex]y=-\frac{1}{4}x+40[/tex]
Hence, the equation is: [tex]y=-\frac{1}{4}x+40[/tex]