Respuesta :

Answer:

Every 1.71 seconds, the bacteria loses [tex]\frac{1}{2}[/tex]

Step-by-step explanation:

Given

[tex]B(t) = 8500 * (\frac{8}{27})^\frac{t}{3}\\[/tex]

Required [Missing from the question]

Every __ seconds, the bacteria loses [tex]\frac{1}{2}[/tex]

First, we model the function from t/3 to t.

[tex]B(t) = 8500 * (\frac{8}{27})^\frac{t}{3}\\[/tex]

Apply law of indices

[tex]B(t) = 8500 * (\frac{8^\frac{1}{3}}{27^\frac{1}{3}})^t[/tex]

Evaluate each exponent

[tex]B(t) = 8500 * (\frac{2}{3})^t[/tex] --- This gives the number of bacteria at time t

At time 0, we have:

[tex]B(0) = 8500 * (\frac{2}{3})^0[/tex]

[tex]B(0) = 8500 * 1[/tex]

[tex]B(0) = 8500[/tex]

Let r be the time 1/2 disappears.

When 1/2 disappears, we have:

[tex]B(r) = \frac{B(0)}{2}[/tex]

[tex]B(r) = \frac{8500}{2}[/tex]

[tex]B(r) = 4250[/tex]

So, we have:

[tex]B(t) = 8500 * (\frac{2}{3})^t[/tex]

Substitute r for t

[tex]B(r) = 8500 * (\frac{2}{3})^r[/tex]

Substitute [tex]B(r) = 4250[/tex]

[tex]4250 = 8500 * (\frac{2}{3})^r[/tex]

Divide both sides by 8500

[tex]\frac{4250}{8500} = (\frac{2}{3})^r[/tex]

[tex]\frac{1}{2} = (\frac{2}{3})^r[/tex]

Take log of both sides

[tex]log(\frac{1}{2}) = log (\frac{2}{3})^r[/tex]

Apply law of logarithm

[tex]log(\frac{1}{2}) = r\ log (\frac{2}{3})[/tex]

Make r the subject

[tex]r = log(\frac{1}{2}) / log (\frac{2}{3})[/tex]

[tex]r = \frac{-0.3010}{-0.1761}[/tex]

[tex]r = 1.71[/tex]

Hence, it reduces by 1/2 after every 1.71 seconds

Answer:

Every second, the number of bacteria is multiplied by a factor of 0.67

Step-by-step explanation:

Let's rewrite the base so that the exponent is just t.

(8/27)^t/3=((8/27)^1/3)t=(2/3)^t

Therefore, we can rewrite the modeling function as follows.

B(t)=8500⋅(2/3)t

According to this model, the number of bacteria is multiplied by 2/3 every second. Rounding this to two decimal places, we get 2/3 ≈0.67