Respuesta :
Answer:
[tex]a = -\frac43[/tex]
Step-by-step explanation:
Hello!
Standard form of a quadratic: [tex]ax^2 + bx + c = 0[/tex]
Quadratic Equation: [tex]x = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a}[/tex]
Convert it to Standard Form:
- [tex]9a^2 + 25a + 16 = a[/tex]
- [tex]9a^2 + 24a + 16 = 0[/tex]
In this equation, x is replaced with a, and a is replaced with x.
Solve
- [tex]a = \frac{-b\pm\sqrt{b^2 - 4xc}}{2x}[/tex]
- [tex]a = \frac{-24\pm\sqrt{24^2 - 4(9)(16)}}{2(9)}[/tex]
- [tex]a = \frac{-24\pm\sqrt{576 - 576}}{18}[/tex]
- [tex]a = \frac{-24\pm\sqrt{0}}{18}[/tex]
- [tex]a = -\frac{24}{18}[/tex]
- [tex]a = -\frac43[/tex]
The value of a is [tex]-\frac43[/tex]