Answer:
[tex]Q_t= 8.3 * 10^3 C[/tex]
Explanation:
From the question we are told that:
Resistor [tex]R=1000ohms[/tex]
Voltage [tex]v=120_V[/tex]
Capacitance of c_1 [tex]c_1=20 \mu F[/tex]
Capacitance of c_2 [tex]c_2=60 \mu F[/tex]
Time [tex]t=0[/tex]
Generally the equation for charges is mathematically given by
[tex]For C_1\\Charge\ on\ C_1 = CV = 20*120 = 2400 μC = 2.4 x 10^-3 C\\Charge\ on\ C_1 = 2400 μC = 2.4 x 10^-3 C\\Charge\ on\ C_1 = 2.4 x 10^-3 C\\[/tex]
[tex]ForC_2\\Charge on C_2 = 60*120 =7200 μC = 7.2 x 10^-3\\Charge on C_2 = 7.2 x 10^-3[/tex]
Generally the equation for voltage across capacitors is mathematically given by
[tex]V_c(t)=V(1-e^{-t/RC})[/tex]
[tex]C=C_1+C_2=80 \mu f\\t=2RC=>160000s[/tex]
[tex]V_c(t)=120(1-e^{-(160000)/1000*(80)})[/tex]
[tex]V_c(t)=103.7598[/tex]
Generally the equation for charges is mathematically given by
[tex]Q1(t) = C1Vc(t)\\Q1(t) = 20*103.7598\\Q1(t) = 2075.196\\\\Q2(t) = 60*103.7598\\Q2(t) = 6225.6\\[/tex]
Generally the equation for total charges [tex]Q_t[/tex] is mathematically given by
[tex]Q_t=Q1(t)+Q2(t)[/tex]
[tex]Q_t= 8.3 * 10^3 C[/tex]