Respuesta :
Answer:
Step-by-step explanation:
r = 8/3 units
h = 13 units
Volume of cone = (1/3) πr²h
[tex]= \frac{1}{3}* 3.14 * \frac{8}{3}* \frac{8}{3}*13\\\\= 96.76 cubic units[/tex]
Question:-
If the radius of the base of the cone, r, is [tex] \frac{8}{3} [/tex] units and the height, h, is 13 units, what is the volume of the cone ?
Answer:-
Given:-
[tex] \bullet [/tex] Radius of the base of the cone (r) is [tex] \frac{8}{3} [/tex] units.
[tex] \bullet [/tex] Height (h) of the cone is 13 units.
To Find:-
Volume of the cone.
Solution:-
We know,
Formula of volume of cone is [tex] \frac{1}{3} [/tex] πr²h
So, volume of the cone = [tex] \frac{1}{3} [/tex] × [tex] \frac{22}{7} [/tex] × [tex] (\frac{8}{3})² [/tex] × 13
= [tex] \frac{1}{3} [/tex] × [tex] \frac{22}{7} [/tex] × [tex] \frac{8}{3} [/tex] × [tex] \frac{8}{3} [/tex] × 13
= [tex] \frac{22 \: × \: 8 \: × \: 8 \: × \: 13}{3 \: × \: 7 \: × \: 3 \: × \: 3} [/tex]
= [tex] \frac{18304}{189} [/tex]
= 96.85 cubic units.