Respuesta :

Answer:

Step-by-step explanation:

r = 8/3 units

h = 13 units

Volume of cone = (1/3) πr²h

                           [tex]= \frac{1}{3}* 3.14 * \frac{8}{3}* \frac{8}{3}*13\\\\= 96.76 cubic units[/tex]

Question:-

If the radius of the base of the cone, r, is [tex] \frac{8}{3} [/tex] units and the height, h, is 13 units, what is the volume of the cone ?

Answer:-

Given:-

[tex] \bullet [/tex] Radius of the base of the cone (r) is [tex] \frac{8}{3} [/tex] units.

[tex] \bullet [/tex] Height (h) of the cone is 13 units.

To Find:-

Volume of the cone.

Solution:-

We know,

Formula of volume of cone is [tex] \frac{1}{3} [/tex] πr²h

So, volume of the cone = [tex] \frac{1}{3} [/tex] × [tex] \frac{22}{7} [/tex] × [tex] (\frac{8}{3})² [/tex] × 13

= [tex] \frac{1}{3} [/tex] × [tex] \frac{22}{7} [/tex] × [tex] \frac{8}{3} [/tex] × [tex] \frac{8}{3} [/tex] × 13

= [tex] \frac{22 \: × \: 8 \: × \: 8 \: × \: 13}{3 \: × \: 7 \: × \: 3 \: × \: 3} [/tex]

= [tex] \frac{18304}{189} [/tex]

= 96.85 cubic units.

Volume of the cone is 96.85 cubic units. [Answer]