Respuesta :

Answer:

[tex]y = 7.5[/tex]

Step-by-step explanation:

Given

Direct variation implies that:

[tex]y = kx[/tex]

Where k is the constant of variation.

[tex]x=4; y=3[/tex]

Required

Find y when [tex]x = 10[/tex]

[tex]y = kx[/tex]

Make k the subject

[tex]k = \frac{y}{x}[/tex]

For: [tex]x=4; y=3[/tex]

[tex]k = \frac{3}{4}[/tex]

For: [tex]x = 10[/tex]

[tex]k = \frac{y}{x}[/tex] becomes

[tex]k = \frac{y}{10}[/tex]

Substitute [tex]k = \frac{3}{4}[/tex]

[tex]\frac{3}{4} = \frac{y}{10}[/tex]

Make y the subject

[tex]y = \frac{3}{4} * 10[/tex]

[tex]y = \frac{3* 10}{4}[/tex]

[tex]y = \frac{30}{4}[/tex]

[tex]y = 7.5[/tex]